SHRI VENKATESHWARA UNIVERSITY

Syllabus

B.Tech

Electrical Engineering VIII SEMESTER (Four Years Programme)

(w.e.f. 2019-20)

SCHOOL OF ENGINEERIN & TECHNOLOGY SEMESTER- IV

SI	Subje ct	Subject	Periods			TER VIII Evaluation Scheme			End Semest er		Total	Credit	
N 0.	Codes		L	T	Р	СТ	TA	Tot a l	P S	TE	P E	-	
1	SEE- 801	Advanced Electric Drives	3	0	0	20	10	30		70		100	3
2	SOE- 081	Renewable Energy	3	0	0	20	10	30		70		100	3
3	SOE- 082	Operation Research	3	0	0	20	10	30		70		100	3
4	SEE-811	Project Stage-II	0	0	1 2				100		100	200	6
5	SEE-888	Seminar							100			100	3
												600	18

SEE-	Advanced Electric Drives	3L:0	3 credits
801		T:0P	

Course Outcomes:

At the end of this course, students will demonstrate the ability to

- Understand the operation of power electronic converters and their control strategies.
 Understand the vector control strategies for ac motor drives
 - Understand the implementation of the control strategies using digital signal processors.

Module 1: Power Converters for AC drives (10 hours)

PWM control of inverter, selected harmonic elimination, space vector modulation, current control of VSI, three level inverter, Different topologies, SVM for 3 level inverter, Diode rectifier with boost chopper, PWM converter as line side rectifier, current fed inverters with self-commutated devices. Control of CSI, H bridge as a 4-Q drive.

Module 2: Induction motor drives (10 hours)

Different transformations and reference frame theory, modeling of induction machines, voltage fedinverter control-v/f control, vector control, direct torque and flux control(DTC).

Module 3: Synchronous motor drives (6 hours)

Modeling of synchronous machines, open loop v/f control, vector control, direct torque control, CSI fedsynchronous motor drives.

Module 4: Permanent magnet motor drives (6 hours)

Introduction to various PM motors, BLDC and PMSM drive configuration, comparison, block diagrams, Speed and torque control in BLDC and PMSM.

Module 5: Switched reluctance motor drives (6 hours)

Evolution of switched reluctance motors, various topologies for SRM drives, comparison, Closed loopspeed and torque control of SRM.

Module 6: DSP based motion control (6 hours)

Use of DSPs in motion control, various DSPs available, realization of some basic blocks in DSP for implementation of DSP based motion control.

Text / References:

- 1. B. K. Bose, "Modern Power Electronics and AC Drives", Pearson Education, Asia, 2003.
- 2. P.C. Krause, O. Wasynczuk and S.D. Sudhoff, "Analysis of Electric Machinery and Drive Systems", John Wiley & Sons, 2013.
 - 3. H. A. Taliyat and S. G. Campbell, "DSP based Electromechanical Motion Control", CRC press,2003.
- 4. R. Krishnan, "Permanent Magnet Synchronous and Brushless DC motor Drives", CRC Press, 2009.